Bisector Graphs for Min-/Max-Volume Roofs
Over Simple Polygons

Günther Eder – Martin Held – Peter Palfrader

March 2016, Lugano
Motivation

- Comparing two polygons. A lower area does not always lead to a lower roof volume.
- The lower envelope over all planes is not the minimum volume roof. (Neither does the upper envelope lead to the maximum volume roof.)
Motivation

- Comparing two polygons. A lower area does not always lead to a lower roof volume.
- The lower envelope over all planes is not the minimum volume roof. (Neither does the upper envelope lead to the maximum volume roof.)
Introduction

Approach

- Building on *Roof Model and Bisector Graphs*[^2].
- *Wavefront Propagation*[^1] extended by two additional events.

Approach

- Building on *Roof Model* and *Bisector Graphs*\(^2\).
- *Gradient Property*\(^2\) generalized.
- *Wavefront Propagation*\(^1\) extended by two additional events.

Theorem (Roof ⇔ Bisector Graph\(^2\))

Every roof for P corresponds to a unique bisector graph of P, and vice versa.

INTRODUCTION

APPROACH

- Building on *Roof Model and Bisector Graphs*[^2].
- *Wavefront Propagation*[^1] extended by two additional events.

NATURAL GRADIENT PROPERTY

Let $\mathcal{R}(\mathcal{P})$ be a roof for \mathcal{P}. We say that a facet f of $\mathcal{R}(\mathcal{P})$ has the *natural gradient property* if, for every point $p \in f$, there exists a path that (i) starts at p, (ii) follows the steepest gradient, and (iii) reaches the boundary of \mathcal{P}.

Introduction

Approach

- Building on *Roof Model* and *Bisector Graphs*\[^2\].
- *Gradient Property*\[^2\] generalized.
- *Wavefront Propagation*\[^1\] extended by two additional events.

Extended Wavefront Propagation

- Edge Event and Split Event\[^2\].
- Create Event and Divide Event

Introduction

Approach

- Building on *Roof Model* and *Bisector Graphs*[^2].
- *Wavefront Propagation*[^1] extended by two additional events.

Extended Wavefront Propagation

- Edge Event and Split Event[^2].
- **Create Event** and Divide Event

Introduction

Approach

- Building on *Roof Model and Bisector Graphs*[^2].
- *Wavefront Propagation*[^1] extended by two additional events.

General Position

- No two edges of \mathcal{P} are parallel to each other.
- Not more than three bisectors of edges of \mathcal{P} meet in one point.

Introduction

Approach

- Building on Roof Model and Bisector Graphs\cite{2}.
- Gradient Property\cite{2} generalized.
- Wavefront Propagation\cite{1} extended by two additional events.

General Position

- No two edges of \mathcal{P} are parallel to each other.
- Not more than three bisectors of edges of \mathcal{P} meet in one point.

Introduction

Approach

- Building on *Roof Model and Bisector Graphs*[^2].
- *Wavefront Propagation*[^1] extended by two additional events.

Definition (Min-/Max-Volume Bisector Graph)

The *maximum-volume bisector graph* $B_{\text{max}}(\mathcal{P})$ of a polygon \mathcal{P} is a bisector graph $B(\mathcal{P})$ where the associated roof $R(\mathcal{P})$ has the natural gradient property for each of its facets and that maximizes the volume over all possible natural roofs for \mathcal{P}. Similarly for the *minimum-volume bisector graph* $B_{\text{min}}(\mathcal{P})$.

Two consecutive edges e_i, e_j of \mathcal{P}.
Edges of \mathcal{P} are oriented. A half plane $\Pi(e)$ that starts at the supporting line $\ell(e)$ of an edge spans to its left. $\Pi(e)$ overlaps locally with the interior of \mathcal{P}.
A bisector $b_{i,j}$ spans from the intersection of the supporting line of two edges into their common interior.
Wavefront propagation of e_i and e_j.
Wavefront propagation of e_i and e_j. A wavefront edge moves at unit speed (self parallel). The speed $s(v)$ of a wavefront vertex v depends on the angle between the supporting lines forming its bisector[3].

$$s(v_{i,j}) = \frac{1}{\sin(\alpha/2)}$$
Every bisector defines a vertex that has a starting point and associated speed. In case such a vertex is not part of the wavefront we call it *stealth vertex*.

\[
s(v_{i,j}) = \frac{1}{\sin(\alpha/2)}
\]

\[
s(v_{j,k}) = \frac{1}{\sin(\beta/2)}
\]
Another input edge e_x of \mathcal{P}.
At some point $p_{i,j,x}$ is the wavefront vertex incident with the supporting line from the wavefront edge of e_x.
At some point $p_{i,j,x}$ is the wavefront vertex incident with the supporting line from the wavefront edge of e_x. The three bisectors meet at that point as well.
The wavefront changes: an additional edge e is created, and e is parallel to the wavefront edge of e_x. The two wavefront vertices on $b_{i,x}$ and $b_{j,x}$ are both reflex.
The wavefront changes: an additional edge e is created, and e is parallel to the wavefront edge of e_x. The two wavefront vertices on $b_{i,x}$ and $b_{j,x}$ are both reflex.
Consecutive edges along a polygon boundary.
Consecutive edges along a polygon boundary. Wavefront propagation on the first (edge) event.
Consecutive edges along a polygon boundary. Wavefront propagation on the first (edge) event. Wavefront propagation continues.
The stealth vertex $v_{i,j}$ becomes incident with the wavefront edge originating from e_x at point $p_{i,j,x}$.
The stealth vertex $v_{i,j}$ becomes incident with the wavefront edge originating from e_x at point $p_{i,j,x}$. Three arcs start at this point and create two new facets.
The stealth vertex \(v_{i,j} \) becomes incident with the wavefront edge originating from \(e_x \) at point \(p_{i,j,x} \). Three arcs start at this point and create two new facets. One of these facets lies in the plane \(\Pi(e_i) \) and one in \(\Pi(e_j) \).
A small disc c centered around a create event p is partitioned into three wedges by the three arcs incident at p. If one wedge has an angle greater than π it involves a wavefront vertex, starting at p, that moves faster than the wavefront vertex which ends at p.
A small disc c centered around a create event p is partitioned into three wedges by the three arcs incident at p. If one wedge has an angle greater than π it involves a wavefront vertex, starting at p, that moves faster than the wavefront vertex which ends at p.
The wavefront propagation is used both to compute $B_{\min}(P)$ and $B_{\max}(P)$. The complexity is dominated by the computation of the create events. One create event takes $O(n \log n)$ time to compute and enqueue. There can be up to $O(n^2)$ create events.
The wavefront propagation is used both to compute $B_{\text{min}}(P)$ and $B_{\text{max}}(P)$.

The complexity is dominated by the computation of the create events.

- One create event takes $\mathcal{O}(n \log n)$ time to compute and enqueue.
- There can be up to $\mathcal{O}(n^2)$ create events.
The wavefront propagation is used both to compute $\mathcal{B}_{\text{min}}(P)$ and $\mathcal{B}_{\text{max}}(P)$. The complexity is dominated by the computation of the create events. One create event takes $O(n \log n)$ time to compute and enqueue. There can be up to $O(n^2)$ create events.
The wavefront propagation is used both to compute $B_{\min}(P)$ and $B_{\max}(P)$.
The complexity is dominated by the computation of the create events.
One create event takes $O(n \log n)$ time to compute and enqueue.
There can be up to $O(n^2)$ create events.
The wavefront propagation is used both to compute $B_{\text{min}}(P)$ and $B_{\text{max}}(P)$. The complexity is dominated by the computation of the create events. One create event takes $O(n \log n)$ time to compute and enqueue. There can be up to $O(n^2)$ create events.

The overall complexity to compute $B_{\text{min}}(P)$ or $B_{\text{max}}(P)$ is in $O(n^3 \log n)$.
Thanks for your attention!
The number of facets B_{min} and B_{max} can have is in $\mathcal{O}(n^2)$.
Lemma

The upper envelope of two natural roofs is not necessarily a natural roof.
